Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.613
Filtrar
1.
Reprod Domest Anim ; 59(5): e14583, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747479

RESUMEN

Testosterone, an important sex hormone, regulates sexual maturation, testicular development, spermatogenesis and the maintenance of secondary sexual characteristics in males. Testicular Leydig cells are the primary source of testosterone production in the body. Hezuo pigs, native to the southern part of Gansu, China, are characterized by early sexual maturity, strong disease resistance and roughage tolerance. This study employed type IV collagenase digestion combined with cell sieve filtration to isolate and purify Leydig cells from the testicular tissue of 1-month-old Hezuo pigs. We also preliminarily investigated the functions of these cells. The results indicated that the purity of the isolated and purified Leydig cells was as high as 95%. Immunofluorescence analysis demonstrated that the isolated cells specifically expressed the 3ß-hydroxysteroid dehydrogenase antibody. Enzyme-linked immunosorbent assay results showed that the testosterone secretion of the Leydig cells cultured in vitro (generations 5-9) ranged between 1.29-1.67 ng/mL. Additionally, the content of the cellular autophagy signature protein microtubule-associated protein 1 light chain 3 was measured at 230-280 pg/mL. Through this study, we established an in vitro system for the isolation, purification and characterization of testicular Leydig cells from 1-month-old Hezuo pigs, providing a reference for exploring the molecular mechanism behind precocious puberty in Hezuo pigs.


Asunto(s)
Células Intersticiales del Testículo , Testosterona , Animales , Masculino , Células Intersticiales del Testículo/metabolismo , Testosterona/metabolismo , Porcinos , Testículo/citología , Células Cultivadas , Técnicas de Cultivo de Célula/veterinaria , Separación Celular/métodos , Separación Celular/veterinaria
2.
FASEB J ; 38(9): e23650, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696238

RESUMEN

The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region-leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1-Cre to knock out CREBZF in androgen-synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice. Conditional knockout (cKO) CREBZF did not affect fertility and serum testosterone level in male mice. Primary Leydig cells isolated from CREBZF-cKO mice showed impaired testosterone secretion and decreased mRNA levels of Star, Cyp17a1, and Hsd3b1. Loss of CREBZF resulted in thickening of the adrenal cortex, especially X-zone, with elevated serum corticosterone and dehydroepiandrosterone levels and decreased serum dehydroepiandrosterone sulfate levels. Immunohistochemical staining revealed increased expression of StAR, Cyp11a1, and 17ß-Hsd3 in the adrenal cortex of CREBZF-cKO mice, while the expression of AR was significantly reduced. Along with the histological changes and abnormal steroid levels in the adrenal gland, CREBZF-cKO mice showed higher anxiety-like behavior and impaired memory in the elevated plus maze and Barnes maze, respectively. In summary, CREBZF is dispensable for fertility, and CREBZF deficiency in Leydig cells promotes adrenal function in adult male mice. These results shed light on the requirement of CREBZF for fertility, adrenal steroid synthesis, and stress response in adult male mice, and contribute to understanding the crosstalk between testes and adrenal glands.


Asunto(s)
Corteza Suprarrenal , Células Intersticiales del Testículo , Ratones Noqueados , Animales , Masculino , Ratones , Células Intersticiales del Testículo/metabolismo , Corteza Suprarrenal/metabolismo , Andrógenos/metabolismo , Testosterona/sangre , Testosterona/metabolismo , Conducta Animal , Ratones Endogámicos C57BL
3.
Cell Mol Life Sci ; 81(1): 212, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724675

RESUMEN

Leydig cells are essential components of testicular interstitial tissue and serve as a primary source of androgen in males. A functional deficiency in Leydig cells often causes severe reproductive disorders; however, the transcriptional programs underlying the fate decisions and steroidogenesis of these cells have not been fully defined. In this study, we report that the homeodomain transcription factor PBX1 is a master regulator of Leydig cell differentiation and testosterone production in mice. PBX1 was highly expressed in Leydig cells and peritubular myoid cells in the adult testis. Conditional deletion of Pbx1 in Leydig cells caused spermatogenic defects and complete sterility. Histological examinations revealed that Pbx1 deletion impaired testicular structure and led to disorganization of the seminiferous tubules. Single-cell RNA-seq analysis revealed that loss of Pbx1 function affected the fate decisions of progenitor Leydig cells and altered the transcription of genes associated with testosterone synthesis in the adult testis. Pbx1 directly regulates the transcription of genes that play important roles in steroidogenesis (Prlr, Nr2f2 and Nedd4). Further analysis demonstrated that deletion of Pbx1 leads to a significant decrease in testosterone levels, accompanied by increases in pregnenolone, androstenedione and luteinizing hormone. Collectively, our data revealed that PBX1 is indispensable for maintaining Leydig cell function. These findings provide insights into testicular dysgenesis and the regulation of hormone secretion in Leydig cells.


Asunto(s)
Infertilidad Masculina , Células Intersticiales del Testículo , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Testículo , Testosterona , Animales , Masculino , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/patología , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Ratones , Testosterona/metabolismo , Testículo/metabolismo , Testículo/patología , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Infertilidad Masculina/metabolismo , Diferenciación Celular/genética , Espermatogénesis/genética , Ratones Endogámicos C57BL , Ratones Noqueados
4.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732137

RESUMEN

Gonadotoxic agents could impair spermatogenesis and may lead to male infertility. The present study aimed to evaluate the effect of IL-1ß on the development of spermatogenesis from cells isolated from seminiferous tubules (STs) of normal and busulfan-treated immature mice in vitro. Cells were cultured in a 3D in vitro culture system for 5 weeks. We examined the development of cells from the different stages of spermatogenesis by immunofluorescence staining or qPCR analyses. Factors of Sertoli and Leydig cells were examined by qPCR analysis. We showed that busulfan (BU) treatment significantly reduced the expression of testicular IL-1ß in the treated mice compared to the control group (CT). Cultures of cells from normal and busulfan-treated immature mice induced the development of pre-meiotic (Vasa), meiotic (Boule), and post-meiotic (acrosin) cells. However, the percentage of developed Boule and acrosin cells was significantly lower in cultures of busulfan-treated mice compared to normal mice. Adding IL-1ß to both cultures significantly increased the percentages of Vasa, Boule, and acrosin cells compared to their controls. However, the percentage of Boule and acrosin cells was significantly lower from cultures of busulfan-treated mice that were treated with IL-1ß compared to cultures treated with IL-1ß from normal mice. Furthermore, addition of IL-1ß to cultures from normal mice significantly increased only the expression of androgen receptor and transferrin but no other factors of Sertoli cells compared to their CT. However, the addition of IL-1ß to cultures from busulfan-treated mice significantly increased only the expression of androgen-binding protein and the FSH receptor compared to their CT. Adding IL-1ß to cultures of normal mice did not affect the expression of 3ßHSD compared to the CT, but it significantly reduced its expression in cultures from busulfan-treated mice compared to the CT. Our findings demonstrate the development of different stages of spermatogenesis in vitro from busulfan-treated mice and that IL-1ß could potentiate this development in vitro.


Asunto(s)
Busulfano , Interleucina-1beta , Espermatogénesis , Animales , Busulfano/farmacología , Espermatogénesis/efectos de los fármacos , Masculino , Interleucina-1beta/metabolismo , Ratones , Células de Sertoli/metabolismo , Células de Sertoli/efectos de los fármacos , Células de Sertoli/citología , Testículo/metabolismo , Testículo/efectos de los fármacos , Testículo/citología , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/efectos de los fármacos , Túbulos Seminíferos/efectos de los fármacos , Túbulos Seminíferos/metabolismo , Células Cultivadas
5.
Ecotoxicol Environ Saf ; 277: 116391, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678792

RESUMEN

Prenatal exposure to diethylhexyl phthalate (DEHP) has been linked with a decline in testosterone levels in adult male rats, but the underlying mechanism remains unclear. We investigated the potential epigenetic regulation, particularly focusing on N6-methyladenosine (m6A) modification, as a possible mechanism. Dams were gavaged with DEHP (0, 10, 100, and 750 mg/kg/day) from gestational day 14 to day 21. The male offspring were examined at the age of 56 days. Prenatal DEHP administration at 750 mg/kg/day caused a decline in testosterone concentrations, an elevation in follicle-stimulating hormone, a downregulated expression of CYP11A1 HSD3B2, without affecting Leydig cell numbers. Interestingly, Methyltransferase Like 4 (METTL4), an m6A methyltransferase, was downregulated, while there were no changes in METTL3 and METTL14. Moreover, CYP11A1 showed m6A reduction in response to prenatal DEHP exposure. Additionally, METTL4 expression increased postnatally, peaking in adulthood. Knockdown of METTL4 resulted in the downregulation of CYP11A1 and HSD3B2 and an increase in SCARB1 expression. Furthermore, the increase in autophagy protection in adult Leydig cells induced by prenatal DEHP exposure was not affected by 3-methyladenosine (3MA) treatment, indicating a potential protective role of autophagy in response to DEHP exposure. In conclusion, prenatal DEHP exposure reduces testosterone by downregulating CYP11A1 and HSD3B2 via m6A epigenetic regulation and induction of autophagy protection in adult Leydig cells as a response to DEHP exposure.


Asunto(s)
Dietilhexil Ftalato , Regulación hacia Abajo , Epigénesis Genética , Células Intersticiales del Testículo , Metiltransferasas , Efectos Tardíos de la Exposición Prenatal , Testosterona , Animales , Femenino , Masculino , Embarazo , Ratas , Adenosina/análogos & derivados , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/análogos & derivados , Regulación hacia Abajo/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Células Intersticiales del Testículo/efectos de los fármacos , Metiltransferasas/genética , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas Sprague-Dawley , Testosterona/sangre
6.
J Cell Mol Med ; 28(8): e18303, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613362

RESUMEN

Curcuma longa, best known for its culinary application as the main constituent of curry powder, has shown potential impact on the reproductive system. This study aimed to investigate the efficacy of Curcuma longa extract (CLE) on Kidney-Yang deficiency mice induced by hydrocortisone and the possible roles in testosterone secretion in Leydig cells. We evaluated male sexual behaviour, reproductive organ weight, testosterone levels, and histological tissue changes in hydrocortisone-induced mice. CLE effectively reversed hydrocortisone-induced Kidney-Yang deficiency syndrome by improving sexual behaviour, testis and epididymis weight, testosterone levels and reducing pathological damage. Our in vitro study further indicated that CLE stimulated testosterone production via upregulating the mRNA and protein expression of steroidogenic enzymes in Leydig cells. It significantly improved H89-inhibited protein expression of StAR and cAMP-response element-binding (CREB), as well as melatonin-suppressed StAR protein expression. The data obtained from this study suggest that CLE could alleviate Kidney-Yang deficiency symptoms and stimulate testosterone production by upregulating the steroidogenic pathway. This research identifies CLE as a potential nutraceutical option for addressing testosterone deficiency diseases.


Asunto(s)
Glomerulonefritis , Extractos Vegetales , Testosterona , Masculino , Animales , Ratones , Células Intersticiales del Testículo , Curcuma , Hidrocortisona , Deficiencia Yang
7.
Aging Male ; 27(1): 2346322, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38676285

RESUMEN

Insulin-like peptide 3 (INSL3) is a circulating biomarker for Leydig cell functional capacity in men, also indicating Leydig Cell Insufficiency (LCI) and potential primary hypogonadism. Using results from large cohort studies we explore sources of biological and technical variance, and establish a reference range for adult men. It is constitutively secreted with little within-individual variation and reflects testicular capacity to produce testosterone. The main INSL3 assays available indicate good concordance with low technical variance; there is no effect of ethnicity. INSL3 declines with age from 35 years at about 15% per decade. Like low calculated free testosterone, and to a lesser extent low total testosterone, reduced INSL3 is significantly associated with increasing age-related morbidity, including lower overall sexual function, reflecting LCI. Consequently, low INSL3 (≤0.4 ng/ml; ca. <2 SD from the population mean) might serve as an additional biochemical marker in the assessment of functional hypogonadism (late-onset hypogonadism, LOH) where testosterone is in the borderline low range. Excluding individuals with low LCI (INSL3 ≤ 0.4 ng/ml) leads to an age-independent (> 35 years) reference range (serum) for INSL3 in the eugonadal population of 0.4 - 2.3 ng/ml, with low INSL3 prospectively identifying individuals at risk of increased future morbidity.


Asunto(s)
Biomarcadores , Hipogonadismo , Células Intersticiales del Testículo , Proteínas , Testosterona , Humanos , Masculino , Hipogonadismo/sangre , Persona de Mediana Edad , Valores de Referencia , Proteínas/análisis , Testosterona/sangre , Biomarcadores/sangre , Anciano , Adulto , Insulinas/sangre , Insulina/sangre
8.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612808

RESUMEN

We examined the localization of the 5-hydroxytryptamine (5-HT) receptor and its effects on mouse colonic interstitial cells of Cajal (ICCs) using electrophysiological techniques. Treatment with 5-HT increased the pacemaker activity in colonic ICCs with depolarization of membrane potentials in a dose-dependent manner. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers blocked pacemaker activity and 5-HT-induced effects. Moreover, an adenylate cyclase inhibitor inhibited 5-HT-induced effects, and cell-permeable 8-bromo-cAMP increased the pacemaker activity. Various agonists of the 5-HT receptor subtype were working in colonic ICCs, including the 5-HT4 receptor. In small intestinal ICCs, 5-HT depolarized the membrane potentials transiently. Adenylate cyclase inhibitors or HCN blockers did not show any influence on 5-HT-induced effects. Anoctamin-1 (ANO1) or T-type Ca2+ channel blockers inhibited the pacemaker activity of colonic ICCs and blocked 5-HT-induced effects. A tyrosine protein kinase inhibitor inhibited pacemaker activity in colonic ICCs under controlled conditions but did not show any influence on 5-HT-induced effects. Among mitogen-activated protein kinase (MAPK) inhibitors, a p38 MAPK inhibitor inhibited 5-HT-induced effects on colonic ICCs. Thus, 5-HT's effect on pacemaker activity in small intestinal and colonic ICCs has excitatory but variable patterns. ANO1, T-type Ca2+, and HCN channels are involved in 5-HT-induced effects, and MAPKs are involved in 5-HT effects in colonic ICCs.


Asunto(s)
Enfermedades del Colon , Células Intersticiales de Cajal , Animales , Ratones , Masculino , Serotonina/farmacología , Células Intersticiales del Testículo , Inhibidores de Adenilato Ciclasa , Bloqueadores de los Canales de Calcio , Inhibidores de Proteínas Quinasas
9.
Ecotoxicol Environ Saf ; 276: 116316, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615640

RESUMEN

Aflatoxins B1 (AFB1) a dangerous type of aflatoxin, poses a serious threat to human health. Meanwhile, Taraxasterol, a bioactive compound in dandelion, exhibits strong anti-inflammatory and antioxidant activity. Therefore, the aim of this study was to investigate the impact of AFB1 on the intrinsic and extrinsic pathways of apoptosis, as well as evaluate the protective role of taraxasterol in the TM3 Leydig cell line. Cell viability was evaluated using an MTT assay, measuring the effects of 3.6 µM AFB1 and varying concentrations of taraxasterol. Expression levels of Caspase 3,8, and 9 were analyzed with RT-qPCR, and flow cytometry was used to assess cell cycle progression and apoptotic alterations. The findings of this study demonstrated that exposure to 3.6 µM of AFB1 resulted in an upregulation of Caspase 3 and Caspase 9 expression, indicating an activation of apoptotic pathways in TM3 cells. Additionally, the analysis of apoptosis revealed a significant increase in cellular apoptosis at this AFB1 concentration. However, when TM3 cells were exposed to 5 µM of taraxasterol, a downregulation of Caspase 3 and Caspase 9 expression was observed, suggesting a protective effect against apoptosis. Moreover, the apoptotic rate in TM3 cells was reduced in the presence of 5 µM of taraxasterol. Consequently, this study highlights the potential of taraxasterol as a protective agent against AFB1-induced apoptosis and suggest its potential application in regulating cell survival and apoptosis-related processes. Further investigations are necessary to elucidate the underlying mechanisms and evaluate the clinical implications of taraxasterol in the context of fertility disorders and other conditions associated with AFB1 exposure.


Asunto(s)
Aflatoxina B1 , Apoptosis , Supervivencia Celular , Células Intersticiales del Testículo , Triterpenos , Aflatoxina B1/toxicidad , Apoptosis/efectos de los fármacos , Células Intersticiales del Testículo/efectos de los fármacos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ratones , Masculino , Triterpenos/farmacología , Esteroles/farmacología , Caspasa 3/metabolismo , Sustancias Protectoras/farmacología , Caspasa 9/metabolismo
10.
PLoS One ; 19(4): e0302403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662754

RESUMEN

With aging, men develop testosterone-deficiency syndrome (TDS). The development is closely associated with age-related mitochondrial dysfunction of Leydig cell and oxidative stress-induced reactive oxygen species (ROS). Testosterone-replacement therapy (TRT) is used to improve the symptoms of TDS. However, due to its various side effects, research on functional ingredients derived from natural products that do not have side effects is urgently needed. In this study, using the mitochondrial dysfunction TM3 (mouse Leydig) cells, in which testosterone biosynthesis is reduced by H2O2, we evaluated the effects of elderberry extract and monosaccharide-amino acid (fructose-leucine; FL) on mRNA and protein levels related to steroidogenesis-related enzymes steroidogenic acute regulatory protein (StAR), cytochrome P450 11A1(CYP11A1, cytochrome P450 17A1(CYP17A1), cytochrome P450 19A1(CYP19A1, aromatase), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), and 17ß-hydroxysteroid dehydrogenase(17ß-HSD). We analyzed elderberry extract and extract-derived FL for changes in ROS scavenging activity and testosterone secretion. Elderberry extract and FL significantly reduced H2O2-induced intracellular ROS levels, improved testosterone secretion, and increased the mRNA and protein expression levels of steroidogenesis-related enzymes (StAR, 3b-HSD, 17b-HSD, CYP11A1, CYp17A1). However, the conversion of testosterone to estradiol was inhibited by elderberry extract and extract-derived FL, which reduced the mRNA and protein expression of CYP19A1. In conclusion, elderberry extract and FL are predicted to have value as novel functional ingredients that may contribute to the prevention of TDS by ameliorating reduced steroidogenesis.


Asunto(s)
Peróxido de Hidrógeno , Células Intersticiales del Testículo , Extractos Vegetales , Testosterona , Animales , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/efectos de los fármacos , Ratones , Peróxido de Hidrógeno/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Masculino , Línea Celular , Aminoácidos/metabolismo , Monosacáridos , Sambucus/química , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética
11.
PLoS One ; 19(4): e0292198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38574116

RESUMEN

The surgical sterilization of cats and dogs has been used to prevent their unwanted breeding for decades. However, this is an expensive and invasive procedure, and often impractical in wider contexts, for example the control of feral populations. A sterilization agent that could be administered in a single injection, would not only eliminate the risks imposed by surgery but also be a much more cost-effective solution to this worldwide problem. In this study, we sought to develop a targeting peptide that would selectively bind to Leydig cells of the testes. Subsequently, after covalently attaching a cell ablation agent, Auristatin, to this peptide we aimed to apply this conjugated product (LH2Auristatin) to adult male mice in vivo, both alone and together with a previously developed Sertoli cell targeting peptide (FSH2Menadione). The application of LH2Auristatin alone resulted in an increase in sperm DNA damage, reduced mean testes weights and mean seminiferous tubule size, along with extensive germ cell apoptosis and a reduction in litter sizes. Together with FSH2Menadione there was also an increase in embryo resorptions. These promising results were observed in around a third of all treated animals. Given this variability, we discuss how these reagents might be modified in order to increase target cell ablation and improve their efficacy as sterilization agents.


Asunto(s)
Células Intersticiales del Testículo , Testículo , Masculino , Ratones , Animales , Gatos , Perros , Espermatogénesis , Semen , Células de Sertoli/metabolismo , Péptidos/metabolismo
12.
J Agric Food Chem ; 72(18): 10616-10626, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38656193

RESUMEN

Deoxynivalenol (DON) is a common food contaminant that can impair male reproductive function. This study investigated the effects and mechanisms of DON exposure on progenitor Leydig cell (PLC) development in prepubertal male rats. Rats were orally administrated DON (0-4 mg/kg) from postnatal days 21-28. DON increased PLC proliferation but inhibited PLC maturation and function, including reducing testosterone levels and downregulating biomarkers like HSD11B1 and INSL3 at ≥2 mg/kg. DON also stimulated mitochondrial fission via upregulating DRP1 and FIS1 protein levels and increased oxidative stress by reducing antioxidant capacity (including NRF2, SOD1, SOD2, and CAT) in PLCs in vivo. In vitro, DON (2-4 µM) inhibited PLC androgen biosynthesis, increased reactive oxygen species production and protein levels of DRP1, FIS1, MFF, and pAMPK, decreased mitochondrial membrane potential and MFN1 protein levels, and caused mitochondrial fragmentation. The mitochondrial fission inhibitor mdivi-1 attenuated DON-induced impairments in PLCs. DON inhibited PLC steroidogenesis, increased oxidative stress, perturbed mitochondrial homeostasis, and impaired maturation. In conclusion, DON disrupts PLC development in prepubertal rats by stimulating mitochondrial fission.


Asunto(s)
Células Intersticiales del Testículo , Mitocondrias , Dinámicas Mitocondriales , Estrés Oxidativo , Ratas Sprague-Dawley , Tricotecenos , Animales , Masculino , Dinámicas Mitocondriales/efectos de los fármacos , Ratas , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/citología , Tricotecenos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Testosterona/metabolismo , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/citología , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Potencial de la Membrana Mitocondrial/efectos de los fármacos
13.
Food Chem Toxicol ; 188: 114678, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643823

RESUMEN

Hexafluoropropylene oxide trimer acid (HFPO-TA) is an alternative to perfluorooctanoic acid (PFOA) and is widely used in various industries. The effects of HFPO-TA on the male reproductive system and the underlying mechanisms are still not fully understood. In this study, TM3 mouse Leydig cells were used as the main model to evaluate the cytotoxicity of HFPO-TA in vitro. HFPO-TA inhibited the viability and expression of multiple biomarkers of Leydig cells. HFPO-TA also induced Leydig cell apoptosis in a caspase-dependent manner. Moreover, HFPO-TA induced the ubiquitination and degradation of Mcl-1 in a ß-TrCP-dependent manner. Further investigations showed that HFPO-TA treatment led to the upregulation of ROS, which activated the ER stress/JNK/ß-TrCP axis in Leydig cells. Overall, our study provides novel insights into the cytotoxic effects of HFPO-TA on the male reproductive system.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Células Intersticiales del Testículo , Masculino , Animales , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Ratones , Estrés del Retículo Endoplásmico/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
14.
Toxicology ; 504: 153789, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522820

RESUMEN

Chlorpyrifos is an organophosphate insecticide used to control pests in crops. Thus, humans are constantly exposed through ingestion of contaminated food or water, inhalation of contaminated air, and through the skin. The juvenile and peripubertal periods comprise a window of development of the reproductive system, sensitive to toxic agents. Considering the scarcity of data on exposure to the insecticide during these periods, the aim of this study was to evaluate the effects of chlorpyrifos on the testis during the juvenile and peripubertal periods. Thirty Wistar rats with an initial age of 25 days were distributed into 3 groups: control, which received corn oil (vehicle); CPS5, which received 5 mg/Kg b.w. of chlorpyrifos; and CPS15, which received 15 mg/Kg b.w. of chlorpyrifos. The groups were treated via gavage daily for 40 days and on the 41st experimental day, the animals were anesthetized and submitted to euthanasia to collect the organs. Blood was collected to obtain plasma and testosterone measurement. The testicles were removed, weighed and used for sperm count analyses, histopathological and morphometric analyzes and for oxidative stress analyses. Spermatozoa from the vas deferens were collected for analyzes of sperm morphology and acrosome integrity. The results showed that the two concentrations of chlorpyrifos caused a decrease in the number of Leydig and Sertoli cells and germ cells and increased the number of morphologically abnormal sperm and sperm with acrosomal damage. Furthermore, a decrease in lipid peroxidation was observed in the CPS5 and CPS15 groups, and a decrease in glutathione-S-transferase activity in the CPS5 group. We conclude that exposure to chlorpyrifos harms the daily production of sperm, as well as their quality, in addition to causing an imbalance in the oxidoreductive balance of the testicle.


Asunto(s)
Cloropirifos , Insecticidas , Células Intersticiales del Testículo , Ratas Wistar , Células de Sertoli , Espermatozoides , Animales , Masculino , Cloropirifos/toxicidad , Insecticidas/toxicidad , Espermatozoides/efectos de los fármacos , Espermatozoides/patología , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/patología , Células Intersticiales del Testículo/metabolismo , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Células de Sertoli/patología , Ratas , Maduración Sexual/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Testosterona/sangre , Testículo/efectos de los fármacos , Testículo/patología , Testículo/metabolismo , Recuento de Espermatozoides
15.
Front Endocrinol (Lausanne) ; 15: 1347435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532895

RESUMEN

Cryptorchidism is the condition in which one or both testes have not descended adequately into the scrotum. The congenital form of cryptorchidism is one of the most prevalent urogenital anomalies in male newborns. In the acquired form of cryptorchidism, the testis that was previously descended normally is no longer located in the scrotum. Cryptorchidism is associated with an increased risk of infertility and testicular germ cell tumors. However, data on pubertal progression are less well-established because of the limited number of studies. Here, we aim to review the currently available data on pubertal development in boys with a history of non-syndromic cryptorchidism-both congenital and acquired cryptorchidism. The review is focused on the timing of puberty, physical changes, testicular growth, and endocrine development during puberty. The available evidence demonstrated that the timing of the onset of puberty in boys with a history of congenital cryptorchidism does not differ from that of non-cryptorchid boys. Hypothalamic-pituitary-gonadal hormone measurements showed an impaired function or fewer Sertoli cells and/or germ cells among boys with a history of cryptorchidism, particularly with a history of bilateral cryptorchidism treated with orchiopexy. Leydig cell function is generally not affected in boys with a history of cryptorchidism. Data on pubertal development among boys with acquired cryptorchidism are lacking; therefore, more research is needed to investigate pubertal progression among such boys.


Asunto(s)
Criptorquidismo , Neoplasias Testiculares , Recién Nacido , Humanos , Masculino , Criptorquidismo/patología , Neoplasias Testiculares/patología , Células Intersticiales del Testículo/patología , Pubertad/fisiología
16.
Nat Commun ; 15(1): 2120, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459012

RESUMEN

As testicular mesenchymal stromal cells, stem Leydig cells (SLCs) show great promise in the treatment of male hypogonadism. The therapeutic functions of mesenchymal stromal cells are largely determined by their reciprocal regulation by immune responses. However, the immunoregulatory properties of SLCs remain unclear. Here, we observe that SLCs transplantation restore male fertility and testosterone production in an ischemia‒reperfusion injury mouse model. SLCs prevent inflammatory cascades through mitochondrial transfer to macrophages. Reactive oxygen species (ROS) released from activated macrophages inducing mitochondrial transfer from SLCs to macrophages in a transient receptor potential cation channel subfamily member 7 (TRPM7)-mediated manner. Notably, knockdown of TRPM7 in transplanted SLCs compromised therapeutic outcomes in both testicular ischemia‒reperfusion and testicular aging mouse models. These findings reveal a new mechanism of SLCs transplantation that may contribute to preserve testis function in male patients with hypogonadism related to immune disorders.


Asunto(s)
Hipogonadismo , Canales Catiónicos TRPM , Humanos , Masculino , Ratones , Animales , Células Intersticiales del Testículo , Testículo/fisiología , Testosterona , Hipogonadismo/terapia , Macrófagos , Proteínas Serina-Treonina Quinasas
17.
Mol Reprod Dev ; 91(3): e23739, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480999

RESUMEN

During male fetal development, testosterone plays an essential role in the differentiation and maturation of the male reproductive system. Deficient fetal testosterone production can result in variations of sex differentiation that may cause infertility and even increased tumor incidence later in life. Fetal Leydig cells in the fetal testis are the major androgen source in mammals. Although fetal and adult Leydig cells are similar in their functions, they are two distinct cell types, and therefore, the knowledge of adult Leydig cells cannot be directly applied to understanding fetal Leydig cells. This review summarizes our current knowledge of fetal Leydig cells regarding their cell biology, developmental biology, and androgen production regulation in rodents and human. Fetal Leydig cells are present in basement membrane-enclosed clusters in between testis cords. They originate from the mesonephros mesenchyme and the coelomic epithelium and start to differentiate upon receiving a Desert Hedgehog signal from Sertoli cells or being released from a NOTCH signal from endothelial cells. Mature fetal Leydig cells produce androgens. Human fetal Leydig cell steroidogenesis is LHCGR (Luteinizing Hormone Chronic Gonadotropin Receptor) dependent, while rodents are not, although other Gαs -protein coupled receptors might be involved in rodent steroidogenesis regulation. Fetal steroidogenesis ceases after sex differentiation is completed, and some fetal Leydig cells dedifferentiate to serve as stem cells for adult testicular cell types. Significant gaps are acknowledged: (1) Why are adult and fetal Leydig cells different? (2) What are bona fide progenitor and fetal Leydig cell markers? (3) Which signaling pathways and transcription factors regulate fetal Leydig cell steroidogenesis? It is critical to discover answers to these questions so that we can understand vulnerable targets in fetal Leydig cells and the mechanisms for androgen production that when disrupted, leads to variations in sex differentiation that range from subtle to complete sex reversal.


Asunto(s)
Andrógenos , Células Intersticiales del Testículo , Animales , Masculino , Humanos , Células Intersticiales del Testículo/metabolismo , Andrógenos/metabolismo , Células Endoteliales/metabolismo , Proteínas Hedgehog/metabolismo , Testículo/metabolismo , Testosterona , Hormona Luteinizante/metabolismo , Receptores de HL/metabolismo , Mamíferos
18.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38477640

RESUMEN

Teleost testis development during the annual cycle involves dramatic changes in cellular compositions and molecular events. In this study, the testicular cells derived from adult black rockfish at distinct stages - regressed, regenerating and differentiating - were meticulously dissected via single-cell transcriptome sequencing. A continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, was delineated, elucidating the molecular events involved in spermatogenesis. Subsequently, the dynamic regulation of gene expression associated with spermatogonia proliferation and differentiation was observed across spermatogonia subgroups and developmental stages. A bioenergetic transition from glycolysis to mitochondrial respiration of spermatogonia during the annual developmental cycle was demonstrated, and a deeper level of heterogeneity and molecular characteristics was revealed by re-clustering analysis. Additionally, the developmental trajectory of Sertoli cells was delineated, alongside the divergence of Leydig cells and macrophages. Moreover, the interaction network between testicular micro-environment somatic cells and spermatogenic cells was established. Overall, our study provides detailed information on both germ and somatic cells within teleost testes during the annual reproductive cycle, which lays the foundation for spermatogenesis regulation and germplasm preservation of endangered species.


Asunto(s)
Espermatogonias , Testículo , Adulto , Masculino , Humanos , Células Intersticiales del Testículo , Células de Sertoli , Espermatogénesis
19.
J Hazard Mater ; 470: 134142, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38555669

RESUMEN

Low testosterone (T) levels are associated with many common diseases, such as obesity, male infertility, depression, and cardiovascular disease. It is well known that environmental cadmium (Cd) exposure can induce T decline, but the exact mechanism remains unclear. We established a murine model in which Cd exposure induced testicular T decline. Based on the model, we found Cd caused mitochondrial fusion disorder and Parkin mitochondrial translocation in mouse testes. MFN1 overexpression confirmed that MFN1-dependent mitochondrial fusion disorder mediated the Cd-induced T synthesis suppression in Leydig cells. Further data confirmed Cd induced the decrease of MFN1 protein by increasing ubiquitin degradation. Testicular specific Parkin knockdown confirmed Cd induced the ubiquitin-dependent degradation of MFN1 protein through promoting Parkin mitochondrial translocation in mouse testes. Expectedly, testicular specific Parkin knockdown also mitigated testicular T decline. Mito-TEMPO, a targeted inhibitor for mitochondrial reactive oxygen species (mtROS), alleviated Cd-caused Parkin mitochondrial translocation and mitochondrial fusion disorder. As above, Parkin mitochondrial translocation induced mitochondrial fusion disorder and the following T synthesis repression in Cd-exposed Leydig cells. Collectively, our study elucidates a novel mechanism through which Cd induces T decline and provides a new treatment strategy for patients with androgen disorders.


Asunto(s)
Cadmio , Contaminantes Ambientales , Células Intersticiales del Testículo , Testículo , Testosterona , Ubiquitina-Proteína Ligasas , Masculino , Animales , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Cadmio/toxicidad , Testosterona/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Contaminantes Ambientales/toxicidad , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones Endogámicos C57BL , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética
20.
Ecotoxicol Environ Saf ; 273: 116116, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387140

RESUMEN

Enniatin B1 (ENN B1) is a mycotoxin that can be found in various foods. However, whether ENN B1 is hazardous to the reproductive system is still elusive. Leydig cells are testosterone-generating cells that reside in the interstitial compartment between seminiferous tubules. Dysfunction of Leydig cells could result in male infertility. This study aimed to examine the toxicological effects of ENN B1 against TM3 Leydig cells. ENN B1 significantly inhibited cell viability in a dose-dependent manner. ENN B1 treatment also decreased the expression of functional genes in Leydig cells. Moreover, ENN B1 induced Leydig cells apoptosis and oxidative stress. Mechanistically, ENN B1 leads to the upregulation of Bax and downregulation of Bcl-2 in Leydig cells. In addition, ENN B1 inhibited the Nrf2/HO-1 pathway, which is critical for the induction of oxidative stress. Additionally, ENN B1 treatment repressed the JAK/STAT3 signaling pathway in Leydig cells. Rescue experiments showed that activation of STAT3 resulted in alleviation of ENN B1-induced damage in Leydig cells. Collectively, our study demonstrated that ENN B1 induced Leydig cell dysfunction via multiple mechanisms.


Asunto(s)
Depsipéptidos , Células Intersticiales del Testículo , Micotoxinas , Masculino , Humanos , Factor 2 Relacionado con NF-E2/genética , Micotoxinas/farmacología , Estrés Oxidativo , Apoptosis , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA